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OLS Asymptotics

In Ordinary Least Squares (OLS) estimation, asymptotics refer to the behavior of estimators as
the sample size becomes large. Under the classical assumptions of the classical Llinear regression
model (e.g., linearity, no perfect multicollinearity, homoscedasticity, and no autocorrelation),
OLS estimators exhibit desirable asymptotic properties as the sample size approaches infinity:
Consistency: As the sample size increases, the OLS estimator converges in probability to the true
value of the coefficient. That 1is, the estimator becomes unbiased and gives the correct value 1in
Large samples.

Mathematically, as n»« , the estimator 6"~ converges to 6, the true parameter value.
Asymptotic Normality: The distribution of the OLS estimator becomes normal as the sample size
grows. For Llarge n, the OLS estimator follows a normal distribution with mean equal to the true
parameter and variance equal to the asymptotic variance. This is important because it allows for
inference using standard statistical tests. The distribution can be written as:

6~ N(8,Var(6”))
where the variance of 6" can be consistently estimated.
Efficiency: In Llarge samples, OLS estimators are efficient 1in the class of Linear unbiased
estimators, meaning that they have the smallest possible variance among all Linear unbiased
estimators (this is a consequence of the Gauss-Markov theorem).
Asymptotics imply that, for Llarge samples, OLS estimators are not only unbiased and consistent,
but also normally distributed, making them suitable for hypothesis testing and constructing
confidence intervals. However, these properties rely on the assumptions of the classical Linear
regression model being satisfied.

As the sample size increases, the standard errors decrease at the rate of v(1/n), which is a key
asymptotic property of OLS estimators. This 1s consistent with the fact that larger sample sizes
Lead to more efficient (precise) estimates of the coefficients.

Scripl*EdTter
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wagel <- read.csv(pasted(directory,
model <- 1lm(wage ~ educ + tenure + exper, wagel
summary {model

sel <- vcov(model) %>% diag %>% sqrt %-%
nl <- nobs(model

model half <- lm{wage ~ educ + tenure + exper,

slice(wagel, 1:(nl/2-1
summary (model half

se2 <- vcov(model half) %:% diag %>% sgrt
n2 <- nobs(model half

zel/sel
sqritim2
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Console

Call:
Im{formula = wage ~ educ + tenure + exper, data = wagel)

Residuals:
Min 1¢ Median 3Q Max
-7.6868 -1.7747 -8.6279 1.1969 14.6536

Coefficients:

Estimate Std. Error t wvalue Pr{:|t]|)}
(Intercept) -2.87273 .72896 -3.941 9.22e-85
educ a.59897 85128 11.679 < 2e-16
tenure 8.16927 .82164 7.328 2.93e-14
exper 8.a2234 81286 1.853 a.e645

Signif. codes: @ “*¥*’ @.@61 “*** @.01 “** g.@5 .7 6.1 ° ' 1

Residual standard error: 3.884 on 522 degrees of freedom
Multiple R-squared: ©.3664, Adjusted R-squared: @.3824
F-statistic: 76-87 on 3 and 522 DF, p-value: < 2.2e-16
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Call:

Im({formula = wage ~ educ + tenure + exper, data = slice(wagel,
1:n1/2 - 1%))

Residuals:
Min 1Q Median 3Q Max
-9.1233 -1.9799 -2.4194 1.1393 13.7413

Coefficients:

Estimate Std. Error t value Pr{:>|t])
(Intercept) -4.815%88 1.23781 -3.893 0.888126
educ 8.73164 @.838753 8.359 3.93e-15
tenure @.28928 @.83586 5.837 1.5%e-88
exper 8.84766 @.81942 2.454 ©.814777

Signif. codes: @ “***' g.pol “*** p.@1 ** @.05 ‘.7 @.1 T * 1
Residual standard error: 3.376 on 258 degrees of freedom

Multiple R-squared: @.3294, Adjusted R-squared: .3216
F-statistic: 42.24 on 3 and 258 DF, p-value: < 2.2e-16
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The two ratios are quite similar (0.6208 vs. 0.7058), which aligns with the asymptotic theory that
standard errors decrease at the rate of V(1/n)




